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A novel approach to predict fish abundance using
thermocline depth and animal movement data

• How can we use movement data to better understand and predict CPUE fluctuations of

pelagic species?
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A novel approach to predict fish abundance using
thermocline depth and animal movement data

• How can we use movement data to better understand and predict CPUE fluctuations of

pelagic species?

• The general context is the integration of satellite tag information into population dynamics

modeling using simple stochastic processes, ecological and evolutionary principles.
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Hierarchical models

• Reliable understanding of complex ecological data depends on the formulation of proper

statistical models of the underlying processes.

• Hierarchical statistical models have proved useful towards achieving such goal.

• These models incorporate variability in parameters that otherwise is treated as fixed and

• they incorporate multiple layers of uncertainty.
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Hierarchical models in Ecology

Y ∼ f (y|X, φ)
X ∼ g(x|θ)

it is known that the likelihood is

L(θ, φ) =

∫
f (y|X, φ)g(x|θ)dX.

A few examples include:

• Stochastic population models with added observation error (De Valpine and Hastings 2002,

Clark and Bjornstad 2004, Newman et al. 2006, Dennis et al 2006)

• Stochastic models of species abundance distributions (Etienne and Olff 2005)

• Capture-recapture models with uncertain capture probabilities (George and Robert 1992)
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Non-linear, non-Gaussian SSM

Y ∼ f (y|X, φ)
X ∼ g(x|θ)

it is known that the likelihood is

L(θ, φ) =

∫
f (y|X, φ)g(x|θ)dX.

• Maximum likelihood was known to be very difficult for these models.

• Bayesian solutions to the study of hierarchical population models were much easier to

implement until recently.

• However, it can be very difficult to specify non-informative priors to do “objective bayesian

statistics” for hierarchical models (Nancy Reid, 2008):

– Bayesian hierarchical Poisson models, (Gelman et al 2007)

– Heinrich 2005, Proceedings of Phystat05 (Poisson (εs + b), s of interest, additional

Poisson measurements of b and ε)

– Bayesian probit regression (Jones 2008, Siddhartha and Chib 1984)



10

A persistent problem: non-Identifiability

Non-identifiability of a parameter: the value of the likelihood function evaluated at the data is

unchanged when two different sets of parameters are used (Rannala 2002, Lele et al 2010). But

need to consider 3 cases

• Model Non-Identifiability (MNI): model written in such a way that two or more parameters

are non-separable.

– Can inadvertently be introduced while formulating a Hidden Markov model or a state

space model (McCullogh and Searle 2001, Yang and Rannala 2006)

• Sampling Non-Identifiability (SNI): by pure chance, sample contains 0 information about

the parameter of interest.

– In phylogenetics: all sampled loci contain no mutations in a section of the topology

where a real branching event is present.

• Weak Estimability (WE): Data simply does not contain enough information to estimate the

parameters of interest and the profile likelihood of certain parameters lacks a strong

curvature.
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An example in Fisheries, Meyer and Millar 1999
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Are the model parameters identifiable?

• Identifiability of model parameters is indeed very important!

• Accumulating evidence keeps telling us about the need to integrate different, independent

levels of information to carry reliable statistical inference

• MCMC won’t do miracles for us!!

• Dennis, B., J. M. Ponciano, S. R. Lele, M. L. Taper, and D. F. Staples. (2006) Estimating density dependence, process noise, and
observation error. Ecological Monographs

• Lele S., Nadeem K., Schmuland B.(2010). Estimability and likelihood inference for generalized linear mixed models using data cloning.
JASA

• Dennis, B., Ponciano, J.M. and M.L. Taper (2010). Replicated sampling increases efficiency in monitoring biological populations.
Ecology.

• Lebreton, J.-D. and O. Gimenez (2012). Detecting and estimating density-dependence in wildlife populations. Journal of Wildlife
Management.

• Ponciano, J.M., Burleigh, G., Braun, E. and M. L. Taper (2012) Assessing Parameter Identifiability in Phylogenetic Models Using Data
Cloning. Systematic Biology.
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This talk: it’s not about arguing about a statistical
problem. It’s about offering potential solutions

• Blue Shark Satellite data: A large project involving many institutions -including MADE-

across different countries

– Charlene Da Silva, responsible for part of the movement data from South Africa

– Fabio Hazin and Paulo Travassos, Recife, Brazil: responsible for the research design,

implementation and funds allocation for the tags.

– Mariana Travassos, data analysis and logistics of the project in Brazil

• Sharks tagged with a satellite device: 10 males, 18 females, mature and immature, up to

180 days of tracking, across 4 areas of the Atlantic Ocean
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Study area
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Tag and Pop-off locations: Brazil and South-Africa
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Subset of data analyzed in this study

From

• 19 quadrants of 111 by 111 nautical miles.

• 4 female, tagged blue shark.

For each quadrant, we have available time series of length 16 time units t of

• The number of tagged sharks present in each quadrant at time t.

• DML values during time (t, t + 1)

• CPUEs in the same time interval.

Finally, each time interval consisted of 3 days (for a total of 48 days). Interval chosen matches

the minimum interval size for which presence/absence, DMLs and CPUE values are all

simultaneously available.
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Location of subset of data
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Time series of thermocline data and number of tagged
sharks present at time t, quadrant 1
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Time series of thermocline data and number of tagged
sharks present at time t, quadrant 2
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Time series of thermocline data and number of tagged
sharks present at time t, quadrant 3
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Time series of thermocline data and number of tagged
sharks present at time t, quadrant 4
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Time series of thermocline data and number of tagged
sharks present at time t, quadrant 5
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Time series of thermocline data and number of tagged
sharks present at time t, quadrant 6
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Time series of thermocline data and number of tagged
sharks present at time t, quadrant 7
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Time series of thermocline data and number of tagged
sharks present at time t, quadrant 8
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Time series of thermocline data and number of tagged
sharks present at time t, quadrant 9
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Time series of thermocline data and number of tagged
sharks present at time t, quadrant 10
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Time series of thermocline data and number of tagged
sharks present at time t, quadrant 11
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Time series of thermocline data and number of tagged
sharks present at time t, quadrant 12
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Time series of thermocline data and number of tagged
sharks present at time t, quadrant 13
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Time series of thermocline data and number of tagged
sharks present at time t, quadrant 14
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Time series of thermocline data and number of tagged
sharks present at time t, quadrant 15

5 10 15

0
20

40
60

80

Thermocline depth and # of tagged sharks over time

Time

D
M
L

0
1

2



33

Time series of thermocline data and number of tagged
sharks present at time t, quadrant 16
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Time series of thermocline data and number of tagged
sharks present at time t, quadrant 17
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Time series of thermocline data and number of tagged
sharks present at time t, quadrant 18
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Time series of thermocline data and number of tagged
sharks present at time t, quadrant 19
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A simple probabilistic setting: Discrete,
self-decomposable processes:

Within a single quadrant, the time series of arrivals and departures of individual, tagged sharks

can be modeled according to:

Xt︸︷︷︸
no. of sharks at time t

= α ? Xt−1︸ ︷︷ ︸
no. of sharks that stayed from t−1 to t

+ εt,︸︷︷︸
no. of sharks that arrived

where
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A simple probabilistic setting: Discrete,
self-decomposable processes:

Within a single quadrant, the time series of arrivals and departures of individual, tagged sharks

can be modeled according to:

Xt︸︷︷︸
no. of sharks at time t

= α ? Xt−1︸ ︷︷ ︸
no. of sharks that stayed from t−1 to t

+ εt,︸︷︷︸
no. of sharks that arrived

where

• α = Pr(an individual shark stays from time t− 1 to time t), α ? Xt−1 =
∑Xt−1

i=1 Bi(α) and

Bi(α) =

{
1 w. prob. α

0 w. prob. 1− α

• If I specify a probabilistic model for Xt−1 (say Xt−1 ∼ Pois(θ)), then I can find the

distribution of α ? Xt−1 (Pois(αθ) in this case).

• And if I specify a model for the arrivals (say εt ∼ Pois((1− α)θ)), then I can find the exact

distribution of the process (Xt ∼ Pois(θ) in this case) and

• the conditional transition distribution of the process, P (Xt = xt|Xt−1 = xt−1)
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Connecting the observed time series of sharks
presence/absence with the model

For a given time series of observations x0, x1, . . . , xq, maximizing the joint probability of the

observations, given the model and data at hand i.e -the likelihood function-

P (X0 = x0, X1 = x1 . . . , Xq = xq) = P (X0 = x0)

q∏
i=1

P (Xi = xi|Xi−1 = xi−1)



42

Connecting the observed time series of sharks
presence/absence with the model

For a given time series of observations x0, x1, . . . , xq, maximizing the joint probability of the

observations, given the model and data at hand i.e -the likelihood function-

P (X0 = x0, X1 = x1 . . . , Xq = xq) = P (X0 = x0)

q∏
i=1

P (Xi = xi|Xi−1 = xi−1)

yields the Maximum Likelihood estimates of the model parameters α and θ.



43

Connecting the observed time series of sharks
presence/absence with the model

For a given time series of observations x0, x1, . . . , xq, maximizing the joint probability of the

observations, given the model and data at hand i.e -the likelihood function-

P (X0 = x0, X1 = x1 . . . , Xq = xq) = P (X0 = x0)

q∏
i=1

P (Xi = xi|Xi−1 = xi−1)

yields the Maximum Likelihood estimates of the model parameters α and θ. Note that the

simple Poisson models mentioned above

• assume homogeneity and independence across quadrants (no spatial dependence),



44

Connecting the observed time series of sharks
presence/absence with the model

For a given time series of observations x0, x1, . . . , xq, maximizing the joint probability of the

observations, given the model and data at hand i.e -the likelihood function-

P (X0 = x0, X1 = x1 . . . , Xq = xq) = P (X0 = x0)

q∏
i=1

P (Xi = xi|Xi−1 = xi−1)

yields the Maximum Likelihood estimates of the model parameters α and θ. Note that the

simple Poisson models mentioned above

• assume homogeneity and independence across quadrants (no spatial dependence),

• cannot account for all these 0’s I showed you before,



45

Connecting the observed time series of sharks
presence/absence with the model

For a given time series of observations x0, x1, . . . , xq, maximizing the joint probability of the

observations, given the model and data at hand i.e -the likelihood function-

P (X0 = x0, X1 = x1 . . . , Xq = xq) = P (X0 = x0)

q∏
i=1

P (Xi = xi|Xi−1 = xi−1)

yields the Maximum Likelihood estimates of the model parameters α and θ. Note that the

simple Poisson models mentioned above

• assume homogeneity and independence across quadrants (no spatial dependence),

• cannot account for all these 0’s I showed you before,

• do not model the probability of staying or arriving to a particular location as a function of

the environmental conditions (DML’s, for instance).



46

Connecting the observed time series of sharks
presence/absence with the model

For a given time series of observations x0, x1, . . . , xq, maximizing the joint probability of the

observations, given the model and data at hand i.e -the likelihood function-

P (X0 = x0, X1 = x1 . . . , Xq = xq) = P (X0 = x0)

q∏
i=1

P (Xi = xi|Xi−1 = xi−1)

yields the Maximum Likelihood estimates of the model parameters α and θ. Note that the

simple Poisson models mentioned above

• assume homogeneity and independence across quadrants (no spatial dependence),

• cannot account for all these 0’s I showed you before,

• do not model the probability of staying or arriving to a particular location as a function of

the environmental conditions (DML’s, for instance).

• does not connect movement to CPUEs.
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Accounting for heterogeneity across quadrants

General idea: using the derivation of the Negative Binomial as a conditional Poisson distribution

where the rate is itself a random variable (gamma distributed) (Corbert, Fisher and Williams,

1943), and averaged over all possible rates.
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distributed ?
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results from a random no. of arrival waves between (t− 1, t) and a random no. of animals

coming at each arrival wave,
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General idea: using the derivation of the Negative Binomial as a conditional Poisson distribution

where the rate is itself a random variable (gamma distributed) (Corbert, Fisher and Williams,

1943), and averaged over all possible rates.

Xt︸︷︷︸
no. of sharks at time t

= α ? Xt−1︸ ︷︷ ︸
no. of sharks that stayed from t−1 to t

+ εt,︸︷︷︸
no. of sharks that arrived

.

Xt︸︷︷︸
distributed ?

= α ? Xt−1︸ ︷︷ ︸
NegBinom(γ,p= γ

γ+m)

+ εt,︸︷︷︸
distributed ?

.

It turns out that Xt is a stationary Markov Chain if we assume that the total size of each arrival

results from a random no. of arrival waves between (t− 1, t) and a random no. of animals

coming at each arrival wave, i.e., if

εt =

N∑
i=1

αUi ? Yi =

N∑
i=1

Yi∑
j=1

Bj(α
Ui),where

N ∼ Poi(−γlnα), Yi ∼ Geo(1, β), β = γ/m, and U ∼ Unif(0, 1).
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Accounting for the extra zeros using a process-based
model

The self-decomposable process can be embedded within a zero inflated process by assuming

that there are two ways of observing 0 tagged sharks at a given point in time and space:
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Accounting for the extra zeros using a process-based
model

The self-decomposable process can be embedded within a zero inflated process by assuming

that there are two ways of observing 0 tagged sharks at a given point in time and space:

1. with probability π the quadrant is absolutely unsuitable at time t so no sharks will arrive

and stay, or

2. the quadrant is suitable with probability 1− π but the sharks that were in it just left, i.e.

Idea: Model π as a function of the value of the thermocline depth w. To do that, we take two

approaches:

1. Use the traditional -yet phenomenological- function π(w) = 1/(1 + exp−f(w)), where f (w)

is a linear function of the covariate w,

2. Use a novel approach about niche modeling from ecological and evolutionary ideas.
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(reproduction and survival)
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like?



60

An example from modeling fitness components
(reproduction and survival)

• How does the function of how good a species fares as a function of a covariate has to look

like?

• How does the shape of such function can arise from simple ecological principles (i.e.

compatible with Hutchinsons niche concept)?
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Modeling fitness components (reproduction and survival)

• Define φ(w) =
∫
φ(w)h1(φ(w))dφ(w) as the expected survival probability of any given

individual in a population, as a function of w.
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Modeling fitness components (reproduction and survival)

• Define φ(w) =
∫
φ(w)h1(φ(w))dφ(w) as the expected survival probability of any given

individual in a population, as a function of w.

• h1(φ(w)) is the pdf of the survival probabilities φ(w) as quantities that depend on w

• For a given large number m of individuals, φ(w) ≈ 1
m

∑m
i=1 φi(w).

• Assuming that the climatic condition w affects individuals’ survival probability

independently from each other, then(
1−

∑m
i=1 φi(w)

m

)m
≈ e−

∑m
i=1 φi(w)

is an estimate of the probability that m individuals do not survive under w.
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Modeling fitness components (reproduction and survival)

• Define φ(w) =
∫
φ(w)h1(φ(w))dφ(w) as the expected survival probability of any given

individual in a population, as a function of w.

• h1(φ(w)) is the pdf of the survival probabilities φ(w) as quantities that depend on w

• For a given large number m of individuals, φ(w) ≈ 1
m

∑m
i=1 φi(w).

• Assuming that the climatic condition w affects individuals’ survival probability

independently from each other, then(
1−

∑m
i=1 φi(w)

m

)m
≈ e−

∑m
i=1 φi(w)

and an estimate of the probability that m individuals survive under w is then

1− e−
∑m
i=1 φi(w)
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Modeling fitness components (reproduction and survival)

• Likewise, letting ψ(w) =
∫
ψ(w)h1(ψ(w))dψ(w) be the average probability of not

reproducing given the value of w and that survival has occurred, we get that e−
∑m
i=1 ψi(w)

can be taken as an estimate of the probability that m individuals actually reproduce given

the value of w.
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Modeling fitness components (reproduction and survival)

• Likewise, letting ψ(w) =
∫
ψ(w)h1(ψ(w))dψ(w) be the average probability of not

reproducing given the value of w and that survival has occurred, we get that e−
∑m
i=1 ψi(w)

can be taken as an estimate of the probability that m individuals actually reproduce given

the value of w.

• Without loss of generality, we can write

m∑
i=1

φi(w) = δ(w) = δ0 + δ1w and γ(w) = γ0 + γ1w ≈
m∑
i=1

ψi(w)

.



68

Modeling fitness components (reproduction and survival)

• Likewise, letting ψ(w) =
∫
ψ(w)h1(ψ(w))dψ(w) be the average probability of not

reproducing given the value of w and that survival has occurred, we get that e−
∑m
i=1 ψi(w)

can be taken as an estimate of the probability that m individuals actually reproduce given

the value of w.

• Without loss of generality, we can write

m∑
i=1

φi(w) = δ(w) = δ0 + δ1w and γ(w) = γ0 + γ1w ≈
m∑
i=1

ψi(w)

.

Hence, the covariate-dependent maximum growth rate a(w) could be written as

a(w) = constant× P (surviving)P (reproducing|survival has occurred)

= λ
(
1− e−δ(w)

)
e−γ(w).
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The two hypotheses regarding quadrant suitability
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Estimated suitabilities using only movement and DML
data
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CPUES: a random sample from a distribution with mean
proportional to suitability

Once we have an estimate (and CI’s) of the suitability modeled as a function of the depth of

the thermocline, we model the CPUEs as random samples from a delta-lognormal distribution

whose mean is proportional to these suitabilities. i.e. we let the CPUEs Yi

Yi ∼ δlogNorm(δ, µ = ln(c.π(wi))−
τ 2

2
, τ 2), so it follows that

E[Yi] = δ exp

{
µ +

τ 2

2

}
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Modeling the CPUEs with a δ-lognormal with mean
proportional to the suitability
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Re-scaled estimated suitabilities from movement data
overlaid to 10-year span CPUEs
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