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A novel approach to predict fish abundance using
thermocline depth and animal movement data

e How can we use movement data to better understand and predict CPUE fluctuations of
pelagic species?

e The general context is the integration of satellite tag information into population dynamics
modeling using simple stochastic processes, ecological and evolutionary principles.
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e Reliable understanding of complex ecological data depends on the formulation of proper
statistical models of the underlying processes.

e Hierarchical statistical models have proved useful towards achieving such goal.
e These models incorporate variability in parameters that otherwise is treated as fixed and

e they incorporate multiple layers of uncertainty.



Hierarchical models in Ecology

Y ~ f(yI X, ¢)
X ~ g(x]0)

it is known that the likelihood is
L0.0) = [ F(yIX. dlglxlo)ax
A few examples include:

e Stochastic population models with added observation error (De Valpine and Hastings 2002,
Clark and Bjornstad 2004, Newman et al. 2006, Dennis et al 2006)

e Stochastic models of species abundance distributions (Etienne and OIff 2005)

e Capture-recapture models with uncertain capture probabilities (George and Robert 1992)



Non-linear, non-Gaussian SSM

Y ~ f(ylX, ¢)
X ~ g(x]0)

it is known that the likelihood is
L0.0) = [ F(yIX. dlglxlo)ax

e Maximum likelihood was known to be very difficult for these models.

e Bayesian solutions to the study of hierarchical population models were much easier to
implement until recently.

e However, it can be very difficult to specify non-informative priors to do “objective bayesian
statistics” for hierarchical models (Nancy Reid, 2008):

— Bayesian hierarchical Poisson models, (Gelman et al 2007)

— Heinrich 2005, Proceedings of Phystat05 (Poisson (es + b), s of interest, additional
Poisson measurements of b and ¢)

— Bayesian probit regression (Jones 2008, Siddhartha and Chib 1984)



A persistent problem: non-ldentifiability

Non-identifiability of a parameter: the value of the likelihood function evaluated at the data is
unchanged when two different sets of parameters are used (Rannala 2002, Lele et al 2010). But
need to consider 3 cases

e Model Non-Identifiability (MNI): model written in such a way that two or more parameters
are non-separable.

— Can inadvertently be introduced while formulating a Hidden Markov model or a state
space model (McCullogh and Searle 2001, Yang and Rannala 2006)

e Sampling Non-ldentifiability (SNI): by pure chance, sample contains 0 information about
the parameter of interest.

— In phylogenetics: all sampled loci contain no mutations in a section of the topology
where a real branching event is present.

e Weak Estimability (WE): Data simply does not contain enough information to estimate the
parameters of interest and the profile likelihood of certain parameters lacks a strong
curvature.



An example in Fisheries, Meyer and Millar 1999
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Are the model parameters identifiable?

e |dentifiability of model parameters is indeed very important!

e Accumulating evidence keeps telling us about the need to integrate different, independent
levels of information to carry reliable statistical inference

e MCMC won't do miracles for us!!

e Dennis, B., J. M. Ponciano, S. R. Lele, M. L. Taper, and D. F. Staples. (2006) Estimating density dependence, process noise, and
observation error. Ecological Monographs

e Lele S., Nadeem K., Schmuland B.(2010). Estimability and likelihood inference for generalized linear mixed models using data cloning.
JASA

e Dennis, B., Ponciano, J.M. and M.L. Taper (2010). Replicated sampling increases efficiency in monitoring biological populations.
Ecology.

e Lebreton, J.-D. and O. Gimenez (2012). Detecting and estimating density-dependence in wildlife populations. Journal of Wildlife
Management.

e Ponciano, J.M., Burleigh, G., Braun, E. and M. L. Taper (2012) Assessing Parameter Identifiability in Phylogenetic Models Using Data
Cloning. Systematic Biology.



This talk: it's not about arguing about a statistical
problem. It’s about offering potential solutions

e Blue Shark Satellite data: A large project involving many institutions -including MADE-
across different countries
— Charlene Da Silva, responsible for part of the movement data from South Africa

— Fabio Hazin and Paulo Travassos, Recife, Brazil: responsible for the research design,
implementation and funds allocation for the tags.

— Mariana Travassos, data analysis and logistics of the project in Brazil

e Sharks tagged with a satellite device: 10 males, 18 females, mature and immature, up to
180 days of tracking, across 4 areas of the Atlantic Ocean
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Tag and Pop-off locations: Brazil and South-Africa
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Subset of data analyzed in this study

From

e 19 quadrants of 111 by 111 nautical miles.

e 4 female, tagged blue shark.
For each quadrant, we have available time series of length 16 time units ¢ of

e The number of tagged sharks present in each quadrant at time ¢.
e DML values during time (¢,t + 1)
e CPUEs in the same time interval.
Finally, each time interval consisted of 3 days (for a total of 48 days). Interval chosen matches

the minimum interval size for which presence/absence, DMLs and CPUE values are all
simultaneously available.



Location of subset of data
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Time series of thermocline data and number of tagged
sharks present at time ¢, quadrant 1

Thermocline depth and # of tagged sharks over time
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Time series of thermocline data and number of tagged
sharks present at time ¢, quadrant 2
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Time series of thermocline data and number of tagged
sharks present at time ¢, quadrant 3
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Time series of thermocline data and number of tagged
sharks present at time ¢, quadrant 4

Thermocline depth and # of tagged sharks over time

80

60
|
I
2

DML
40

20

Time



Time series of thermocline data and number of tagged
sharks present at time ¢, quadrant 5
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Time series of thermocline data and number of tagged
sharks present at time ¢, quadrant 6
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Time series of thermocline data and number of tagged
sharks present at time ¢, quadrant 7
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Time series of thermocline data and number of tagged
sharks present at time ¢, quadrant 8
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Time series of thermocline data and number of tagged
sharks present at time ¢, quadrant 9
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Time series of thermocline data and number of tagged
sharks present at time ¢, quadrant 10
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Time series of thermocline data and number of tagged
sharks present at time ¢, quadrant 11
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Time series of thermocline data and number of tagged
sharks present at time ¢, quadrant 12
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Time series of thermocline data and number of tagged
sharks present at time ¢, quadrant 13
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Time series of thermocline data and number of tagged
sharks present at time ¢, quadrant 14
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Time series of thermocline data and number of tagged
sharks present at time ¢, quadrant 15
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Time series of thermocline data and number of tagged
sharks present at time ¢, quadrant 16
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Time series of thermocline data and number of tagged
sharks present at time ¢, quadrant 17
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Time series of thermocline data and number of tagged
sharks present at time ¢, quadrant 18
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Time series of thermocline data and number of tagged
sharks present at time ¢, quadrant 19
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A simple probabilistic setting: Discrete,
self-decomposable processes:

Within a single quadrant, the time series of arrivals and departures of individual, tagged sharks
can be modeled according to:
X, = a*x X + €, where
—~— ———— N~

no. of sharks at time ¢ no. of sharks that stayed from t—1to¢ no. of sharks that arrived
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A simple probabilistic setting: Discrete,
self-decomposable processes:

Within a single quadrant, the time series of arrivals and departures of individual, tagged sharks
can be modeled according to:

X = a*x X + €, where
—~— —— N~
no. of sharks at time ¢ no. of sharks that stayed from t—1to¢ no. of sharks that arrived

e « = Pr(an individual shark stays from time t — 1 to time t), a x X; 1 = Zfifl‘l B;i(«) and

1 w. prob. «

Bi(a) = {

0 w. prob. 1—a«

e If | specify a probabilistic model for X; 1 (say X; 1 ~ Pois(#)), then | can find the
distribution of o x X; 1 (Pois(a#) in this case).

e And if | specify a model for the arrivals (say €; ~ Pois((1 — «)f)), then | can find the exact
distribution of the process (X; ~ Pois(#) in this case) and

e the conditional transition distribution of the process, P(X; = x¢|X; 1 = x1_1)



Connecting the observed time series of sharks
presence/absence with the model

For a given time series of observations z, x1, . .., x,, maximizing the joint probability of the
observations, given the model and data at hand i.e -the likelihood function-

q
P(XQ = Zlfo,Xl =x1... ,Xq = l'q) = P(X() = Io)HP(XZ = a:i|Xi_1 = ZL’Z'_l)
1=1
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Connecting the observed time series of sharks
presence/absence with the model

For a given time series of observations z, x1, . .., x,, maximizing the joint probability of the
observations, given the model and data at hand i.e -the likelihood function-

q
P(XQ:JT())Xl :.CUl...,Xq:l'q) :P(X():l'o)HP(XZ :xi|Xi—1 :.flfi_l)

1=1

yields the Maximum Likelihood estimates of the model parameters a and 8. Note that the
simple Poisson models mentioned above

e assume homogeneity and independence across quadrants (no spatial dependence),
e cannot account for all these 0's | showed you before,

e do not model the probability of staying or arriving to a particular location as a function of
the environmental conditions (DML's, for instance).

e does not connect movement to CPUEs.
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Accounting for heterogeneity across quadrants

General idea: using the derivation of the Negative Binomial as a conditional Poisson distribution
where the rate is itself a random variable (gamma distributed) (Corbert, Fisher and Williams,
1943), and averaged over all possible rates.
X = ax X1 + €t
——— —~—

no. of sharks at time ¢ no. of sharks that stayed from t—1to¢  no. of sharks that arrived

Xy, = ax X1+ €,
. v HH \/
distributed 7 NegBinom(%p:%LLm) distributed 7
It turns out that X, is a stationary Markov Chain if we assume that the total size of each arrival

results from a random no. of arrival waves between (¢t — 1,¢) and a random no. of animals
coming at each arrival wave, i.e., if

7,

Gt—ZOé *xY; = ZZ (a”7), where

=1 j7=1

N ~ Poi(—vlna), Y; ~ Geo(1, ), 8 =v/m, and U ~ Unif(0, 1).
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Accounting for the extra zeros using a process-based
model

The self-decomposable process can be embedded within a zero inflated process by assuming
that there are two ways of observing 0 tagged sharks at a given point in time and space:

1. with probability m the quadrant is absolutely unsuitable at time ¢ so no sharks will arrive
and stay, or

2. the quadrant is suitable with probability 1 — 7 but the sharks that were in it just left, i.e.

|ldea: Model 7 as a function of the value of the thermocline depth w. To do that, we take two
approaches:

1. Use the traditional -yet phenomenological- function m(w) = 1/(1 + exp~/(™)), where f(w)
is a linear function of the covariate w,

2. Use a novel approach about niche modeling from ecological and evolutionary ideas.
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An example from modeling fithess components
(reproduction and survival)

e How does the function of how good a species fares as a function of a covariate has to look
like?

e How does the shape of such function can arise from simple ecological principles (i.e.
compatible with Hutchinsons niche concept)?
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Modeling fitness components (reproduction and survival)

e Define ¢(w) = [ p(w w))de(w) as the expected survival probability of any given
individual in a populatlon, as a function of w.

e h1(p(w)) is the pdf of the survival probabilities ¢(w) as quantities that depend on w
e For a given large number m of individuals, ¢(w) ~ = 31" | ¢;(w).

e Assuming that the climatic condition w affects individuals' survival probability
independently from each other, then

(1 — 2in1 gbl(w)) ~ o i1 Gi(w)

m

and an estimate of the probability that m individuals survive under w is then

1 — e >ty ¢i(w)
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Modeling fitness components (reproduction and survival)

o Likewise, letting 1(w) = [Y(w (w))dw(w) be the average probability of not
reproducing given the value of w and that survival has occurred, we get that e~ 2-i=1%i(®)
can be taken as an estimate of the probability that m individuals actually reproduce given
the value of w.

e Without loss of generality, we can write

Z@ = 0y + 0w and y(w) = 79 + Nw = sz(w)
i=1

Hence, the covariate-dependent maximum growth rate a(w) could be written as

a(w) = constant X P(surviving)P(reproducing|survival has occurred)

= A(1 = e 0 ),



The two hypotheses regarding quadrant suitability

Hypothesis 1: Niche model optimum Hypothesis 2: logit transform model
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Estimated suitabilities using only movement and DML

data
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CPUES: a random sample from a distribution with mean
proportional to suitability

Once we have an estimate (and Cl's) of the suitability modeled as a function of the depth of
the thermocline, we model the CPUEs as random samples from a delta-lognormal distribution
whose mean is proportional to these suitabilities. i.e. we let the CPUEs Y;

7_2

Y; ~ dlogNorm(9, p = In(c.m(w;)) — 5 %),  so it follows that

2
E[Y;] = dexp {M + 5}



Modeling the CPUEs with a o-lognormal with mean

CPUE
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Re-scaled estimated suitabilities from movement data
overlaid to 10-year span CPUEs
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