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Abstract

Animal tracking is a growing field in ecology and previous work has shown that simple speed filtering of tracking data is not
sufficient and that improvement of tracking location estimates are possible. To date, this has required methods that are
complicated and often time-consuming (state-space models), resulting in limited application of this technique and the
potential for analysis errors due to poor understanding of the fundamental framework behind the approach. We describe
and test an alternative and intuitive approach consisting of bootstrapping random walks biased by forward particles. The
model uses recorded data accuracy estimates, and can assimilate other sources of data such as sea-surface temperature,
bathymetry and/or physical boundaries. We tested our model using ARGOS and geolocation tracks of elephant seals that
also carried GPS tags in addition to PTTs, enabling true validation. Among pinnipeds, elephant seals are extreme divers that
spend little time at the surface, which considerably impact the quality of both ARGOS and light-based geolocation tracks.
Despite such low overall quality tracks, our model provided location estimates within 4.0, 5.5 and 12.0 km of true location
50% of the time, and within 9, 10.5 and 20.0 km 90% of the time, for above, equal or below average elephant seal ARGOS
track qualities, respectively. With geolocation data, 50% of errors were less than 104.8 km (,0.94u), and 90% were less than
199.8 km (,1.80u). Larger errors were due to lack of sea-surface temperature gradients. In addition we show that our model
is flexible enough to solve the obstacle avoidance problem by assimilating high resolution coastline data. This reduced the
number of invalid on-land location by almost an order of magnitude. The method is intuitive, flexible and efficient,
promising extensive utilization in future research.
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Introduction

Monitoring the movement of animals is fundamental for
investigating processes and patterns of animal distribution, habitat
use and selection, habitat connectivity, recruitment, migrations,
and foraging strategies. Movements of freely ranging animals are
typically studied using some form of telemetry due to the
difficulties of visually tracking individual animals in the wild.
However, the various forms of telemetry come with certain
limitations, such as limited spatial accuracy and low and/or
uneven temporal resolution of recorded locations [1–6]. For
example, satellite tracking using the ARGOS system yields
location estimates that are categorized into six different quality
classes (i.e. different errors), with uneven sampling due to the
availability of the satellites overhead coupled with the animals’
behavior and location [6,7].

A variety of approaches have been developed to correct
telemetry data by: 1) reducing spatial errors and 2) correcting
for temporal lags and unevenness between data points. For the first
process, filtering techniques are commonly applied to the data,
based on the previous estimation of a maximum traveling speed of
the animal [6,8,9], and eventually an additional angle filter [10].
Such filters remove unlikely locations, but they also increase the
temporal gap between analyzed locations. For the second process,

interpolation between known locations is performed to provide
equally spaced locations for a given time interval [2]. These
processes are appropriate for large scale studies, but they prevent
us from using some potential positional information from
discarded locations and the known spatial inaccuracy of the data
is ignored [5]. Usually, 30% (+/220%) of ARGOS locations are
discarded by filters (Coyne, pers. com.) but this can reach up to
,50–75% in some instances [1] (this work). However, these
processes have the advantages of being intuitively easy to
understand and generally quite simple to implement.

State-space modeling (or state-space models; SSM) is an
alternative process that uses the error in the data as a source of
information to infer the likelihood of the animal’s position [5,11].
In these models, a mechanistic model of movement is coupled to
the data, and a probability of presence at a certain point is inferred
based on the estimated state of the animal. The process model
predicts the future state of an animal given its current state [12].
Observation errors are included in the probability calculations, as
well as other information if they are available, such as sea-surface
temperature [13]. These models are complicated to both
understand and implement, often forcing ecologists researching
animal movement to team up with statistical modelers for their
development and analysis [12]. More importantly, SSM is not a
uniform framework: state-space models can use ‘‘extended’’ or
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Similar	
  pahern	
  can	
  be	
  seen	
  with	
  the	
  max	
  
depth	
  data	
  (Mk10	
  with	
  no	
  `me	
  series)	
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The	
  only	
  excep`on	
  	
  

Marked	
  preference	
  for	
  warm	
  and	
  
shallow	
  waters:	
  70%	
  of	
  the	
  `me	
  in	
  

waters	
  between	
  27	
  and	
  30°C	
  	
  	
  	
  

≈	
  96%	
  between	
  24	
  
and	
  30°C	
  

Minimum	
  temperature:	
  8.2°C	
  



MITIGATION	
  MEASURE?	
  

SPANISH	
  
TECHNOLOGY	
  	
  

JAPANESE	
  
TECHNOLOGY	
  

•  Analysis	
  of	
  observers	
  data	
  from	
  the	
  Brazilian	
  
tuna	
  longline	
  fleet	
  showed:	
  	
  

è
	
   è

	
  CPUE	
  

Deeper	
  hooks	
  to	
  mi`gate	
  the	
  
bycatch	
  of	
  this	
  species?	
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