Using FADs to derive fishery independent indices for monitoring ecosystem impacts from industrial fishing

> Laurent Dagorn, Manuela Capello, Fabien Forget, John Filmalter, Bastien Mérigot, Jean-Louis Deneubourg

Poor knowledge on the pelagic biodiversity

- Very few studies due to the difficulty to access pelagic ecosystems
- Main studies use fisheries data (e.g. longliners, Worm et al. 2003)
- Need for new methods to assess the pelagic biodiversity

CPUE of purse seiners (FADs) is not used as an index of abundance

No fishery-independent indices of abundance of tropical tunas and other species

No acoustic surveys (e.g. small pelagics)

No aerial surveys (e.g. bluefin tuna)

FADs are used to fish Easy access to fish for fishermen → Easy access to fish for scientists

FADs for monitoring the biodiversity

Multispecies aggregations around floating objects Can be used to characterize the pelagic biodiversity (see Gaertner et al. 2008)

Underwater Visual Census (UVC) & Observers

Comparisons of numbers of species observed by UVC or an observer (fishing set) on a same aggregation (Indian Ocean ISSF cruise Torre Giulia)

Underwater visual censuses around FADs could provide reproducible indices of diversity (Gaertner et al. 2008)

© 2011 Europa Technologies Data SIO, NOAA, U.S. Navy, NGA, GEBCO

22 UVCs on drifting FADs in 2003-2005 (FADIO, Taquet et al. 2007) 50 UVCs on drifting FADs in 2011-2012 (ISSF & MADE cruises)

FADs can provide fisheryindependent indices of abundance

Fishery-independent indices on populations

Measure of the probabilities: Times of residence

CRTi: Continuous Residence Time at FADiQi = 1/CRTiCATi: Continuous Absence Time before FADiRi = 1/CATi

Factors affecting CRTs and CATs

Species

Numbers of floating objects

Environment

What do we need?

- To measure times of residence (CRTs) at FADs and absence times (CATs) of species of interests (tunas, sharks, etc.) using electronic tagging
- To monitor the number of floating objects (see ISSF FADTrack) and their trajectories (see French PS providing all data to IRD)
- To collect data from echosounder buoys attached to FISHERS floating objects (Xi)
- To improve the data of these echosounder buoys (abundance of species of interest) MANUFACTURERS

Fishermen deploy and maintain large arrays of instrumented buoys

- The GOOS (Global Ocean Observing System) is maintaining roughly 1250 drifting buoys and 200 moorings to collect oceanographic data (high cost)
- Purse seine vessels maintain approximately 10 to 20 times more drifting objects than this (cost covered by the industry)
- Many coastal countries maintain an array of anchored FADs to support local fisheries

Think on a large scale! Fishermen as Observers of the ocean

Thousands of echosounder buoys collecting data useful for monitoring the abundance of pelagic species