

Evaluation of electropositive metal for reducing shark bycatch in a commercial pelagic longline fishery *

Aurelie Godin ^{1,2} *, *Tonya Wimmer* ², John. H. Wang ³ and Boris Worm ¹

¹ Dalhousie University, ² WWF- Canada, ³ Joint Institute for Marine and Atmospheric Research

* Corresponding Author

+ Accepted for Fisheries Research

Canada's Sharks

- ~ 30 sharks in Canada
- 13 species assessed by national body
 - 4 federally protected
- Primary threat in Canada is bycatch

year-roundseason butprimarilyJune – Nov.

77 licenses~40-50 active

- year-roundseason butprimarilyJune – Nov.

77 licenses~40-50 active

-~ 800- 1000 hooks/set

- 30-50 miles

-daytime haulback

Rare-Earth Metal Pilot Study

Goal: Determine whether the use of rare-earth metals reduce shark bycatch in a commercial pelagic longline fishery

• Standard swordfish fishing practices, mackerel bait

- Treatments:
 - Nd/Pr alloys
 - control lead weight
 - + normal hooks

Study Design

Study Design

- Alternate 30 hooks per treatment and 30 normal hook x 10 = 900 hooks/set
- One trial = 30 Nd / Pr, 30 lead, 30 normal; 10 trials in total

- Lanthanide metals replaced after every two sets
- Calculation of CPUE per treatment; GLMM to assess effect of treatments

7 sets (70 trials), 6300 hooks set
 between Sept 27 – October 3

• Soak time: 6 − 8 hours

- 337 individuals of 7 species:
 - blue shark (64.7%)
 - swordfish (27.9%)
 - shortfin mako (4.7%)

Results

- Sharks 33.3 43.8 / 1000 hooks
- Swordfish 10 22.9 / 1000 hooks
- * Swordfish catch significantly different on treatments than bare hook:
 - control 56% reduction
 - Nd/Pr 48% reduction

Conclusions

- No significant deterrent effect of electropositive metals on sharks
- Presence of treatments appeared to reduce the catch of swordfish
- Lanthanide metals not a feasible option due to deterioration over time

mon .

COSEWIC - Not Assessed 54

Common Names

Common Thresher Shark, Renard Marin (fr)

Description

- A large stout shark with an extremely large caudal fin with a narrow-tip
- Colour: Brown, grey, blue-grey or black on top with metallic hues; white underneath extending over pectoral fin bases

Laborates NORTH

Size (cm)

At Birth: 150 cm Average Size: 303-505 cm Maximum: 6 m

Habitat

- Preferring temperate to tropical waters, they often swim at or near the surface of coastal waters; juveniles may be found inshore in shallow water
- Depth: 0-350 m

Distribution

- Ranges from eastern
 Newfoundland (northernmost part
 of its range in the Northwest
 Atlantic) southward to northern
 South America
- A summer vistor to Atlantic Canadian waters, it may occur from July to November, but most frequently during August and September

Identification Keys

- Extremely large upper lobe of the caudal fin (may be as long or longer than its body length); lower lobe short but well developed
- 2 Second dorsal fin is much smaller than the first; origins well behind the rear tip of the pelvic fin
- 3 Relatively large eyes placed forward on the head
- 4 Short, stubby snout
- 5 Relatively small jaw and teeth
- 6 Sharp, curved teeth without serration

Size (cm)

Maximum: 55 cm (TL)

Hahitai

- Found in deeper waters along the continental shelf and slope
- Depth: 70-1240 m; commonly 300-800 m

Distribution

- Ranges from Davis Strait off west Greenland, Guif of St. Lawrence to the slopes off Nova Scotta and Georges Bank
 Exploratory trawling have
- Exploratory trawling have captured Round Skate offshore from LaHave to Browns Bank In depths of 530 – 1097 m

Common Name

Round Ray, Rale Ronde (fr)

Description

- Distinct spade-shaped disc with rounded comers and a snout with small terminal point
- Collour: Top of disc ash gray to chocolate brown; usually with 1 pale spot between eyes, and 1-2 pale spots on rear of each wing (not on young juveniles). Underneath disc white to gray withsooty patches on pelvics and the rear of pectorals

Identification Keys

- 2 1-2 pale spots on rear of each pectoral fin
- 3 3-5 parallel mid-dorsal rows of roughly equal, claw-like thoms
- 4 Dorsal fins usually joined with no intervening gap or thorn
- 1 Distinct pale spot between eyes
- 5 Triangular patch of 20-30 large thoms on shoulders / neck region
- 6 Juveniles have proportionately longer tall; often confused with Pluto skate (does not occur in Canadian waters)
- 7 Underside of body / tall bare and translucent white in colour with sooty patches

May be confused with

Bigelow Skate (see pg. 76) and/or Winter Skate (see pg. 100)

Shortfin Mako

vs. Porbeagle Shark

- Shortfin Mako Shark and Porbeagle Shark are often confused with one another
- There are two distinguishing features that can separate the two:
- 1) Presence or absence of a white patch on back of the dorsal fin
- 2) Presence or absence of secondary keel on tail

Key Differences

- · Porbeagles have a white patch (below) which is absent in Shortfin Makos (above), as well as the Longfin Mako
- Primary and secondary keels on porbeagle tail (below) distinguish it from a Shortfin Mako (above), which lacks the secondary keel

 Porbeagle teeth are shorter and tricuspid (a point on either side)

Porbeagle Shark

 Shortfin Mako teeth are long and slender

Shortfin Make

